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ABSTRACT
Digital twins have recently gained attention as digital solutions in "Energy 4.0" that will reshape 
the future of the power generation industry toward the digital era. It is supported by the rapid 
advancement of data connectivity and computational power to intensify the potential of digital twin 
technology in addressing the energy trilemma. The energy trilemma has been identified as a global 
challenge to transform the power generation industry landscape to be more efficient and competitive. 
Digital twins have been identified as a key enabler to address the impacts of this global challenge 
on power plants due to several factors such as ageing, performance degradation, and high operating 
costs. This study will evaluate the concept of the digital twin approach by developing the gas turbine 
digital twin to provide future insights into operational performance and optimisation. The gas turbine 
digital twin model is developed through a cutting-edge data-driven approach, utilising an artificial 
neural network (ANN) to deliver superior performance in advanced monitoring applications. The 
digital twin model is constructed structurally in four steps: process identification, data collection, 
pre-processing, and developing the digital twin plant model. The gas turbine operating parameters 
are analysed for critical parameter verification to emulate the gas turbine operation behaviour 

environment. The best deep learning structure 
for data-driven methods is identified based on 
a lower Mean Squared Error (MSE) and an 
average error of less than 0.5% of the predicted 
value. The findings indicate that the digital twin 
data-driven modelling can be applied to future 
advanced monitoring of gas turbines in the 
power generation industry.

Keywords: Artificial Neural Network (ANN),  
data-driven, digital twin, gas turbine, power plant, 
predictive modelling
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INTRODUCTION

Digital twins play a significant role in addressing the Energy Trilemma, which has been 
identified as the global challenge of balancing energy security, environmental sustainability, 
and affordability. In the context of Industry 4.0, digital twins bring benefits to future 
power plantsby optimizing operational and maintenance costs. A digital twin represents 
a real thing, system, process, environment, or entity that exists digitally. Physical data 
from various sources, including sensors, IoT devices, and other data streams, is gathered 
and integrated to produce a digital twin model. This replica can be utilized for analysis, 
modeling, monitoring, and control purposes to better understand and manage the 
physical counterpart. In addition, the digital twin can be developed to perform advanced 
applications such as operating behaviour emulation, anomaly detection (Wu et al., 2023), 
and performance optimization (Rahman et al., 2011). 

In conjunction with Malaysia’s electricity supply industry (MESI 2.0) initiatives, the 
government is committed to addressing the energy trilemma by introducing new enhanced 
dispatch arrangement (NEDA) rules to transform the industry into a more efficient and 
productive one. Under NEDA, generators are allowed to compete based on lower variable 
operating rates (VOR) and heat rates rather than a fixed rate. In the worst-case scenario, 
a power plant cannot dispatch due to process disruptions and equipment failures. This 
will likely result in a prolonged shutdown to investigate the root cause and perform 
corrective action. This condition will have a significant impact on national grid security and 
sustainability due to several factors, such as aging, performance degradation (Meher-Homji 
et al., 2001), restricted loading operations (Castillo et al., 2021), and high operating costs 
(Zhong et al., 2023). Therefore, the digital twin has been identified as a key enabler in the 
future to address the impacts of electricity liberalization on thermal power plant operation 
and performance. This will enhance competition in generation dispatch and result in more 
competitive energy prices. 

The digital twin model is developed through four steps: process identification, data 
collection, data pre-processing, and digital twin plant modeling. Initially, the study 
examines critical gas turbine parameters for verification to develop a digital twin data-
driven model for advanced monitoring. The digital twin is then modeled using a deep 
learning approach to predict gas turbine operating behaviour for anomaly detection and 
performance analysis applications. Finally, the best deep learning structure for data-driven 
methods is identified. The outcome will revolutionize the power plant industry for various 
Industry 4.0 applications.

Literature Review

This study found that adopting digital twins has led to the discovery of five categories of 
power generation in the distribution of digital twin applications. The publication trend 
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indicates that the adoption of the digital twin is dominated by coal-fired and gas turbine 
plant studies at 22.2%, followed by nuclear power and renewable energy at 18.5%, 
respectively. Meanwhile, the least studied renewable energy and cogeneration plants are 
14.8% and 3.7%, respectively. Besides that, another finding indicates that a coal-fired power 
plant publication is focused on the study of components and processes at the same 50% 
rate. However, current studies on gas turbine plants predominantly focus on individual 
components rather than overall processes (Shah et al., 2024). As a result, this study will 
focus on developing a gas turbine digital twin, with a particular emphasis on process areas. 
The details of the digital twin study under the gas turbine application are shown in Table 
1. The combined cycle power plant is a viable future alternative due to its high efficiency 
and capacity to address the energy trilemma while also realising the COP26 initiatives 
by 2030. The coexistence of this plant with renewable energy in the smart grid will help 
to rebalance the energy system between security and sustainability at an optimum cost. 
Hence, the gas turbine prospect can be explored to merge with renewable energy plants for 
smart grid implementation in the future. In addition, the emissions can be reduced further 
by introducing the new combustion technology that can generate energy from natural gas 
co-fired with clean fuel sources such as hydrogen, ammonia, and biomass.

Table1 
The summary of the digital twin study under the gas turbine application

Authors Objective Focus Method Category
Tsoutsanis et al., 2020 Health 

monitoring 
for transient 
operation

Parts Machine 
Learning

Component

Marwaha & Kohn, 2019 Predictive 
maintenance

Compressor Physic Model Component

Ren et al., 2017 Life prediction Rolling bearing Deep Learning Component

Polyakov et al., 2020 Failure 
identification 
and prediction

Component ANN Component

Nikolaev et al.,2019 Condition 
monitoring 
for maintenance

Flame tubes ANN, Physics
Model

Component

Malozemov et al., 2019 Performance 
monitoring 
and improvement

Diesel engine Physic Model Component

Dawes et al., 2019 Life Cycle 
Modelling 
for MRO

Turbine blade Geometry
Model

Component
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METHODOLOGY

This study aims to develop a digital twin model for gas turbine power plant applications 
to simulate the dynamic operational behavior of the system. The scope will encompass 
critical aspects of gas turbine components and overall processes. Figure 1 provides an 
overview of the methodology applied in this study. An artificial neural network (ANN) 
has been selected as the data-driven approach for developing the gas turbine digital twin. 
Moreover, this study will incorporate an optimizer algorithm to enhance prediction accuracy 
and improve the model's performance. This approach is expected to outperform previous 
ANN models, which often required extended iteration times due to the complexity of 
hidden layers and neurons.

Figure 1. The summary of the methodology

Data Collection

The gas turbine's historical operating data is archived in a distributed control system 
(DCS) used to operate and control the power plant. The information is accumulated from 
a real power plant and recorded in CSV file format. The information was collected and 
categorised into four groups of periods that have been logged every minute for historical 
data collection. The Jupyter Notebook performs data analytics to provide an overview of 
data conditions and gas turbine operating profiles. The dataset contains a total of 117,104 
data points and 26 parameters, comprising 24 inputs and 2 outputs.

The dataset is used to analyze variations, such as mean, median, mode, standard 
deviation, and maximum and minimum values of each parameter. Statistical analysis is 
essential for classifying values into different ranges and identifying the aberrant parameters 
and factors that impact performance and optimisation. Histogram plots are used to reveal  
outlier values during the operation of the gas turbine. In addition, the relationship between 
the parameters is presented using a correlation matrix. This matrix provides a quantitative 
indicator of the linear relationships between variables, helping to spot patterns and links 
within the data (Wagavkar, 2023). 
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Data Pre-processing

The dataset must be cleaned during the data pre-processing phase. Cleaning can standardise 
and structure data to maintain uniformity throughout a dataset and adding in fixing errors 
and inconsistencies to improve the accuracy of the data. This is crucial for data integrity 
and avoiding misleading and wrong analysis results. The dataset collected from the physical 
model is limited by the fact that anomalies and outliers can exist in the raw dataset for a 
variety of reasons, including data input mistakes, sensor failures, and unusual conditions. 
The actual and predicted input and output values may differ because of the presence of 
abnormal data points. Therefore, the dataset for the load in the generated output will be 
filtered as values higher than or equal to 125 MW will be used in this study.

The outlier removal methods, Z-score and K-means, will be applied in this study. In 
terms of standard deviations, the Z-score measures how much a data point deviates from the 
mean of a distribution. Outliers are often removed using Z-scores by defining a threshold 
over which data values are deemed outliers. Conversely, K-means is an iterative technique 
for grouping data that divides a dataset into a preset number of groups. To remove outliers, 
it seeks to minimise the within-cluster sum of squares, which indicates the compactness 
and similarity of data points within each cluster. The Z-scores and K-means techniques are 
utilised to eliminate the outliers from the dataset. Furthermore, a boxplot is constructed 
to visualise the data distribution before and after the data-cleaning process. Any value 
outside of the acceptable range has the probability of being an anomalous data point. Data 
points not within the acceptable range are considered an outliers. However, other statistical 
analyses and domain knowledge are still required to make informed decisions about the 
presence and handling of outliers.

Gas Turbine Modelling

The selected approach for a data-driven task is an artificial neural network (ANN) that 
utilizes backpropagation, a robust algorithm for supervised learning. Backpropagation is 
noteworthy for its ability to determine discrepancies between the network's predictions and 
actual outcomes. It works by switching the direction errors move through the network's 
layers. This lets neuron-associated weights be precisely adjusted to improve predictions. 
For the practical implementation of this ANN model, Jupyter Notebook has been chosen 
due to its compatibility with Python, which is renowned for rapid execution. Additionally, 
Jupyter Notebook supports a vast array of machine learning and deep learning libraries, 
making it an excellent tool for this study. Artificial neural networks are powerful tool 
within the domains of artificial intelligence and machine learning, adept at handling tasks 
like pattern recognition, classification, regression, and decision-making. The versatility of 
ANNs allows them to classify and train on data, enabling the generalisation of strategies 
for data interpretation during evaluations.
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In this study, the ANN model is developed using the Keras library and structured with 
input, hidden, and output layers suitable for gas turbine applications. The model ensures 
data consistency by normalising input data to have a zero mean and unit variance. The 
composition of ANNs includes neurons, input layers, hidden layers, and output layers, 
arranged in a layered architecture. The hidden layer settings consists of three because a 
large amount of data requires attentive analysis to reduce errors and losses, which enhances 
the accuracy of the prediction results and achieves the desired outcomes. The connections 
between neurons are associated with weights. These weights determine the strength of 
the connection and are adjusted during training. The initial weights of connections are 
frequently chosen at random using initialisation methods. Each neuron in a layer calculates 
the weighted sum of its inputs, adds a bias term, and then uses an activation function. The 
bias factor increases the weighted sum before the activation function is used. The network 
output is compared to the desired target following a forward pass. The gradients of this 
comparison for the network weights are computed via backpropagation. The learning rate 
determines the step size of these weight updates. This procedure continues until the network 
converges or achieves a suitable performance level. The ANN will generate predictions 
on the original data after training.

Load and Pre-process Data

The StandardScaler from the Python scikit-learn Library is applied to load and pre-
process datasets. The StandardScaler standardizes data on the output and input features 
by eliminating the mean and scaling to unit variance. Each input and output column is 
scaled using this approach by subtracting the mean and dividing by the standard deviation. 
The scaled features are then returned and provided with input and output values. The data 
is converted to a similar scale by standardizing the input attributes and output target. In 
addition, MinMaxScaler transform the data to a fixed range, usually between 0 and 1. 
Normalizing the variables can help alleviate these difficulties and boost the optimisation 
algorithm's convergence.

Model Training and Evaluation

The pre-processed data is split into training and testing sets. The model trains over multiple 
epochs, updating its parameters after processing batches of 32 samples. With a 70% training 
and 30% validation split, performance is monitored using holdout validation and early 
stopping. This approach is particularly effective, given the dataset of 117,104 data points 
and the hardware limitations that restrict extended training times for complex models. 
Early stopping enhances the holdout method by stopping training once the model reaches 
its best performance on the validation set, preventing overfitting. It halts training once 
optimal performance is achieved on the validation set, reducing overfitting. Meanwhile, 
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the scheduler technique is used to automatically adjust the learning rate based on validation 
loss, reducing it when improvement stagnates to help the model overcome local minima. 
This improves convergence without manual intervention, thereby optimizing the training 
process. After compiling the model with a loss function, optimizer, and metrics, a sequential 
model with three dense layers is created. The model is tested on a new dataset to minimize 
bias, and performance metrics are used to fine-tune hyperparameters.

Structure of the ANN Model

Figure 2 illustrates the structure of the Artificial Neural Network (ANN), consisting of 
three hidden layers. The first hidden layer utilizes the rectified linear unit (ReLU) activation 
function and contains 256 neurons. This layer's input data is characterized by 24 features. 
The second hidden layer also employs the ReLU activation function and consists of 128 
neurons. The third and final layer uses a linear activation function with two output units. 
The activation functions are essential for introducing non-linearity to the model, allowing 
the network to capture complex patterns. The output layer uses a linear activation function 
because the problem is a regression task, where the model predicts continuous output 
values. The neuron counts in the hidden layers are powers of two, which optimize memory 
allocation and enhance performance.

Figure 2. ANN development structure

RESULT AND DISCUSSION

The gas turbine digital twin was modeled using artificial neural networks (ANN) and 
achieved optimal performance by integrating the ADAM (adaptive moment estimation) 
optimizer. A thorough performance evaluation focused on critical metrics such as mean 
absolute error (MAE), root mean square error (RMSE), learning curves, gas turbine loss, 
test loss, regression values, prediction accuracy, and overall digital twin performance. 
This analysis clearly highlighted the transformative impact of data cleaning by comparing 
model performance before and after the process. The digital twin model’s performance 
was rigorously tested, starting with a modest architecture of 256 neurons in the first layer 
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and 128 in the second. The model was progressively scaled to larger configurations, with 
the most effective setup found to be 2048 neurons in the first layer and 1024 in the second, 
optimized by the ADAM algorithm. This architecture was identified as the ideal structure 
for enhancing gas turbine performance. After completing the training and validation phases, 
the model's performance on the test dataset was carefully evaluated. As outlined in Table 
2, both MAE and RMSE show significant reductions following data cleaning, indicating a 
substantial improvement in the model's predictive accuracy. The decrease in these metrics 
confirms that removing outliers effectively minimizes discrepancies between predicted 
and actual values. This demonstrates the model’s robustness and reliability, setting a new 
benchmark for data-driven gas turbine performance analysis modelling.

Table 2 
Overall data-driven model performance results

Model performance
No. Performance Indicator Results
1 MAE 4.3758e-04
2 MSE 2.3419e-04
3 RMSE 0.1004
4 Test Accuracy 0.0101
5 R^2 1.00

Furthermore, the test accuracy improves after data cleaning compared to before. The 
increase in the number of neurons and the addition of hidden layer, as well as the use of 
the ADAM optimizer for prediction, result in lower test loss and higher test accuracy. The 
regression value (R^2) indicates the relationship between the output and input variables. 
The negative coefficient indicates that the input and output are negatively correlated, 
meaning they tend to move in opposite directions; however, the regression value after data 
cleaning is positively correlated, implying that it tends to move in the same direction. An 
R^2 score of 1.0 indicates a perfect fit.

The loss function curves are plotted to display the training and validation accuracy and 
loss over time. Figure 3 shows the MSE loss function curve, illustrating the neural network 
model’s training loss across epochs. Lower loss values during both training and validation 
indicate improved model performance. After data pre-processing, the validation loss is less 
than the training loss, signaling that overfitting has not occurred. Data pre-processing led 
to better overall performance, as it removed disturbances present in the previously trained 
and tested datasets. Before data cleaning, the validation line indicated overfitting, where the 
model performed well on training data but poorly on test data. This overfitting would have 
negatively impacted the gas turbine's output performance. Addressing this issue improved 
the model's robustness and generalizability.
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Figure 3. MSE loss function curve

Figure 4. MAE loss function curve
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The MAE is a key metric to evaluate the model's ability to generalize and predict new 
datasets. As shown in Figure 4, the MAE decreases with increasing epoch values, signifying 
that the model is progressively learning and improving. MAE validation is continuously 
monitored throughout the training process to ensure strong performance on unseen data, 
helping to avoid problems like overfitting or underfitting. An early stopping mechanism 
is applied during training, halting the process when validation MAE ceases to improve, 
thus preventing overfitting. The steady decline in errors and the minimal gap between 
training and validation MAE reflect stable validation, indicating that the model generalizes 
effectively without significant increases in validation error over time.

Separate graphs are created for each input and output variable to compare predicted 
values to actual values before data cleaning. According to Figure 5, the input predicted value 
overlaps with the actual value, implying that the predicted value is identical to the actual 
value. If the predicted value and actual value do not overlap and are far apart, it indicates 
that the actual value is not at the predicted value and is influenced by external disturbances 
in the gas turbine. After data cleaning, the predicted and actual values for all parameters 
are nearly identical. In contrast, the dataset before data cleaning contains a few data points 
that are not identical. This is because outliers and disturbances affect dataset learning and 
prediction accuracy. After data cleaning, the location of the data points changes because 
the outliers that affected the gas turbine's performance were eliminated.

Figure 6 illustrates the comparison between predicted and actual output values, showing 
a strong correlation as represented by a diagonal line. After data cleaning, the predicted 
values for gas turbine load and efficiency align closely with the actual values, highlighting 
the improved performance of the model. Prior to data cleaning, some predicted values 
exhibited deviations from the actual outputs, though the spread remained relatively narrow. 
A narrower spread signifies higher prediction accuracy, while a wider spread indicates 
greater variability in model performance. The dense clustering of predicted values after 
cleaning demonstrates high forecasting accuracy, whereas more dispersed plots before 
cleaning suggest increased variability. Overall, the improved alignment in the cleaned data 
underscores the enhanced accuracy and effectiveness of the data-driven model in predicting 
gas turbine load and efficiency.

The normal operational behaviour is illustrated by comparing real and predicted values 
of input and output parameters at specific loads, including 125 MW, 150 MW, 180 MW, 
200 MW, and 220 MW. Table 3 presents samples of these values, along with the error 
percentages and cumulative error percentages. The results show that predictions after data 
cleaning are more accurate, with lower error percentages compared to those before data 
cleaning. The accuracy of predictions before data cleaning is compromised by outliers, 
which affect the model's ability to predict desired values accurately.
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Intake Filter

Compressor

Combustion

Figure 5. The comparison between the actual and predicted values of the input parameters
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Turbine

Exhaust

Figure 5 (continue)
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Load

Efficiency

Figure 6. The comparison between the actual and predicted values of the output parameters

Table 3 
Predicted gas turbine operating parameters at 150 MW

Actual vs Predicted
No Operating Parameter Real Value Prediction Value Error % Error
1 Intake Filter Ambient Temperature 

(degC) 
25.84 25.9260 -0.0860 0.3328

Pressure (Bar) 1.01 1.0055 0.0045 0.4455
Relative Humidity 79.4 79.0366 0.3634 0.4577
Mass Flow (m3/hr) 1615.92 1612.5670 3.3530 0.2075
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Actual vs Predicted
No Operating Parameter Real Value Prediction Value Error % Error
2 Compressor Inlet Guide Vanes 

(DEG)
55.18 54.6566 0.5234 0.9485

Discharge Temperature 
degC)

360.55 360.9410 -0.3910 0.1084

Discharge Pressure (Bar) 10.31 10.3290 -0.0190 0.1843
3 Combustion Fuel Gas Flow (t/hr) 35.71 35.7924 -0.0824 0.2307

Fuel Gas Interstage 
Pressure (Bar)

26.84 26.8396 0.0004 0.0015

Fuel Gas Temperature 
(degC)

185.24 185.3047 -0.0647 0.0349

Speed Ratio Valve (%) 48.97 48.9502 0.0198 0.0404
Fuel Stroke Reference 
(%)

50.77 50.7708 -0.0008 0.0016

Gas Fuel LHV (Btu/scf) 935.93 934.3998 1.5302 0.1635
Firing Temperature 
(degC)

1234.39 1235.3215 -0.9315 0.0755

4 Turbine Wheelspace 
Temperature (degC)

442.88 442.4450 0.4350 0.0982

Turbine Speed (RPM) 2999.37 2999.5833 -0.2133 0.0071
5 Exhaust Temperature (degC) 633.73 633.6862 0.0438 0.0069

Pressure (bar) 27.8 27.9665 -0.1665 0.5989
Exhaust Mass Flow (t/
hr)

1655.1 1657.1015 -2.0015 0.1209

Nitrogen Oxides (Nox) 
(ppm)

20.04 20.0313 0.0087 0.0434

Sulfur Dioxide (SO2) 
(ppm)

0.11 0.1117 -0.0017 1.5455

Carbon Monoxide (CO) 
ppm)

1.97 1.9772 -0.0072 0.3655

Carbon Dioxide (CO2) 
vol%)

4.08 4.0968 -0.0168 0.4118

Oxygen (O2) (vol%) 13.62 13.6015 0.0185 0.1358
6 Generated 

Output
Load (MW) 150.16 149.8041 0.3559 0.2370
Efficiency (%) 30 30.0840 -0.0840 0.2800

Total percentage of error (%) 7.0840

Table 4 comprehensively analyses predictive error percentages for gas turbine loadings 
ranging from 125 MW to 220 MW in a cumulative measure. This measure is derived from 
the sum of the error percentages for 26 different parameters. Notably, the determined 

Table 3 (continue)
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average for these predictive errors is 0.23%. This result demonstrates the effectiveness of 
the predictive models in action.

Table 4 
Overall performance at various loads

Load Error % Ave Error %
125MW 7.8198 0.3008
150MW 7.0840 0.2725
180MW 5.1220 0.1970
200MW 6.4324 0.2474
220MW 4.3914 0.1689
Average error % 0.2373

CONCLUSION

The findings of this study mark a significant advancement in the realm of gas turbine 
performance analytics. This study rigorously built a digital twin model of a gas turbine using 
artificial neural networks (ANN) and achieved a commendable average error percentage 
of approximately 0.23% across various operating conditions. This exceptional precision 
indicates a highly successful model development process, demonstrating the effectiveness 
of the ANN methodology in capturing the complex performance dynamics of gas turbines. 
The ANN hyperparameters were optimized throughout the study, resulting in significant 
improvements in the model's predictive accuracy, as evidenced by substantial decreases in 
key performance metrics such as mean absolute error (MAE) and root mean squared error 
(RMSE). Such enhancements reinforce the model's robustness and highlight the diligent 
efforts to improve the analytical instrument. However, the study's insights are particularly 
valuable for gas turbine operations at load levels exceeding 50% capacity. The complexity 
of turbine behavior at lower loads presents additional challenges, making the current model 
less effective in these volatile conditions. Future research will address these challenges 
by enhancing the digital twin model's ability to perform under low-load conditions and 
incorporating predictions from a thermodynamic cycle perspective.
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